并对漏级供电电压vcc进行控制,从而使偏置电路中漏级电流、栅级电压变大,使射频功率放大器电路的整体增益满足要求。本发明实施例提供的技术方案具有以下优点:在信号的输入端设计可变衰减电路,在实现射频功率放大器电路负增益的同时,对非负增益模式下该电路性能的影响很小,并且加强了对输入端口的静电保护,电路结构简单,占用芯片面积小,能有效的降低硬件成本。本发明实施例还提供了一种增益控制方法,应用于上述实施例中的的射频功率放大器电路,包括:终端中的微控制器通过通信模组接收到控制信息后,确定射频功率放大器电路的工作模式,并通过发送模式控制信号控制射频功率放大器电路进入工作模式;可控衰减电路,根据终端中微处理器发送的模式控制信号,实现射频功率放大器电路的负增益模式与非负增益模式之间的切换;输入匹配电路,使可控衰减电路和驱动放大电路之间阻抗匹配;驱动放大电路,放大输入匹配电路输出的信号;反馈电路,调节射频功率放大器电路的增益;级间匹配电路,使驱动放大电路和功率放大电路之间阻抗匹配;功率放大电路,放大级间匹配电路输出的信号;输出匹配电路,辽宁品质射频功率放大器检测技术,使射频功率放大器电路和后级电路之间阻抗匹配。其中,辽宁品质射频功率放大器检测技术。功率放大器线性化技术一一功率回退,辽宁品质射频功率放大器检测技术、前馈、反馈、预失真,出于射频 预失真结构简单、易于集成和实现等优点。辽宁品质射频功率放大器检测技术
第七电感l7与第五电容c5组成谐振电路。在具体实施中,射频功率放大器还可以包括驱动电路。驱动电路的输入端可以接收输入信号,驱动电路的输出端可以输出差分信号input_p,驱动电路的第二输出端可以输出第二差分信号input_n。驱动电路可以起到将输入信号进行差分的操作,并对输入信号进行驱动,提高输入信号的驱动能力。参照图7,给出了本发明实施例中的又一种射频功率放大器的电路结构图。在图7中,增加了驱动电路。可以理解的是,在图1~图6中,也可以通过驱动电路来对输入信号进行差分处理,得到差分信号input_p以及第二差分信号input_n。在具体实施中,匹配滤波电路还可以包括功率合成变压器对应的寄生电容,功率合成变压器对应的寄生电容包括初级线圈与次级线圈之间的寄生电容,该寄生电容可以参与功率合成和阻抗转换。宽带变压器的阻抗变换主要受匝数比、耦合系数k值和寄生电感电容的影响,具有宽带工作的特点,相对于lc网络的阻抗变换网络更容易实现宽带的阻抗变换,因此适用于宽带功率放大器。应用于高集成度射频功率放大器的宽带变压器,因为受实现工艺的影响,往往k值比较小(k值较小会影响能量耦合,即信号转换效率变低),寄生电感电容影响比较大。辽宁品质射频功率放大器检测技术射频功率放大器的主要技术指标是输出功率与效率,提高输出功率和效率,是射频功率放大器设计目标的中心。
用于放大所述级间匹配电路输出的信号;所述输出匹配电路,用于使所述射频功率放大器电路和后级电路之间阻抗匹配。本申请实施例中,通过射频功率放大器电路中的可控衰减电路、反馈电路、驱动放大电路、功率放大电路等电路对输入信号进行处理,实现射频功率放大器电路的负增益模式与非负增益模式之间的切换,电路结构简单,能有效的降低硬件成本。附图说明图1a为本发明实施例提供的相关技术中射频功率放大器电路的组成结构示意图;图1b为本发明实施例提供的相关技术中射频功率放大器电路的电路结构示意图;图2a为本发明实施例提供的射频功率放大器电路的组成结构示意图;图2b为本发明实施例提供的射频功率放大器电路的电路结构示意图图3为本发明实施例提供的可控衰减电路的示意图;图4为本发明实施例提供的可控衰减电路的示意图;图5a为本发明实施例提供的可控衰减电路和输入匹配电路的示意图;图5b为本发明实施例提供的可控衰减电路和输入匹配电路的示意图;图6为本发明实施例提供的反馈电路的示意图;图7为本发明实施例提供的偏置电路的示意图;图8为本发明实施例提供的可控衰减电路的等效示意图;图9为本发明实施例提供的可控衰减电路的的示意图。
本发明实施例的技术方案具有以下有益效果:增加辅次级线圈可以在不影响初级线圈和主次级线圈的前提下增加输入到输出的能量耦合路径,减小耦合系数k值较小对阻抗变换的影响。根据初级线圈和主次级线圈的k值等参数,选择合适的辅次级线圈的大小和k值可以有效提高功率合成变压器的阻抗变换工作频率范围,降低功率合成变压器损耗。此外,将功率合成变压器的主次级线圈和辅次级线圈以及匹配滤波电路协同设计,能够进一步提高射频功率放大器的宽带阻抗变换和滤波性能。附图说明图1是本发明实施例中的一种射频功率放大器的电路结构图;图2是本发明实施例中的另一种射频功率放大器的电路结构图;图3是本发明实施例中的又一种射频功率放大器的电路结构图;图4是本发明实施例中的再一种射频功率放大器的电路结构图;图5是本发明实施例中的又一种射频功率放大器的电路结构图;图6是本发明实施例中的再一种射频功率放大器的电路结构图;图7是本发明实施例中的又一种射频功率放大器的电路结构图。具体实施方式如上所述,现有技术中,采用普通结构变压器实现功率合成和阻抗变换的pa,只采用变压器及其输入输出匹配电容。这种结构优点是结构相对简单,缺点是难以实现宽带功率放大器。功率放大器一般可分为A、AB、B、c、D、E、F类。
此时信号将产生非线性,其功率需要小于-10dbm才能实现线性输出,此时射频功率放大器电路的线性增益为-10db,因此,其线性输出功率范围为:-45dbm~-10dbm。上述高、中、低功率模式中有功率等级的交叠,这是窄带物联网技术平台的要求,这样可保证应用端配置的灵活性。比如同样功率等级下,选择耗电小的功率模式等。这样发射信号功率即输出功率覆盖了-45dbm到,总共,可满足广域的信号覆盖要求。参见图1a和图1b,在射频功率放大器电路已经加强负反馈基础上(引入负反馈电路),调节各级晶体管的偏置电路(例如调节t2和t4漏极的偏置电流,或者调节t3和t5漏极的偏置电压),再在输入匹配电路之前引入可控衰减电路,可以进一步降低增益。从理论来讲,可控衰减电路通过设计可以满足负增益的需求。这里,可控衰减电路需要考虑尽量降低其对放大器输入匹配电路的影响,它好可以与输入匹配电路的设计融合。另外,需要射频功率放大器电路在没有处于负增益工作模式下时,具有适当的射频传导功率容量和静电保护能力(electro-staticdischarge,esd)。本申请实施例提供一种射频功率放大器电路,如图2所示,与图1a相比,在输入端口和输入匹配电路之间插入可控衰减电路。射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。广东使用射频功率放大器系列
丙类状态:在信号周期内存在工作电流的时间不到半个周期即导通角0 小于18度,丙类功放的优点是效率非常高。辽宁品质射频功率放大器检测技术
计算所述射频功率放大器检测模块的电阻值,比较所述射频功率放大器检测模块的电阻值与所述配置状态电阻值,所述射频功率放大器检测模块的电阻值与所述配置状态电阻值不相等,开启所述射频功率放大器,所述射频功率放大器检测模块的电阻值与所述配置状态电阻值相等,所述射频功率放大器配置完成。本方案在当移动终端切换射频频段启动射频功率放大器时,能够通过对射频功率放大器的状态检测,快速设置各个射频功率放大器从而提升射频的频段切换的速度。附图说明为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是本申请实施例提供的一种移动终端射频功率放大器检测方法的流程示意图;图2为本申请实施例提供的一种射频功率放大器检测电路的连接示意图;图3是本申请实施例提供的一种移动终端射频功率放大器检测装置的结构示意图;图4是本申请实施例提供的移动终端的结构示意图。具体实施方式下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。辽宁品质射频功率放大器检测技术
能讯通信科技(深圳)有限公司总部位于南头街道马家龙社区南山大道3186号明江大厦C501,是一家产 品 分 别 10KHz ~ 18GHz 频 带 有 百 余 种 射 频 功 放 产 品 ,10W、50W、100W、200W 及各类开关 LC 滤波器(高低通滤波器)宽带双定向耦合器系列产品。功放整机 。的公司。公司自创立以来,投身于射频功放,宽带射频功率放大器,射频功放整机,无人机干扰功放,是电子元器件的主力军。能讯通信始终以本分踏实的精神和必胜的信念,影响并带动团队取得成功。能讯通信始终关注自身,在风云变化的时代,对自身的建设毫不懈怠,高度的专注与执着使能讯通信在行业的从容而自信。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。